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Abstract: Using the results of recent numerical simulations, we extend an existing 

kinetic theory for dense flows of identical, nearly elastic, frictionless spheres 

to identical, very dissipative, frictional spheres. The existing theory 

incorporates an additional length scale in the expression for the collisional rate 

of dissipation; this length scale is identified with the size of a cluster of 

correlated particles. Parameters of the theory for very dissipative, frictional 

spheres are set using the results of physical experiments on inclined flows of 

spheres over a rigid, bumpy base in the absence of sidewalls. The resulting 

theory is then tested against the results of physical experiments on flows of the 

same material over the surface of an erodible heap when frictional sidewalls 

are present.  
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Theory 

Recent numerical simulations of dense granular shearing flows [1,2] indicate that 

correlations between the positions and/or the velocities of particles, not considered in 

simple kinetic theories for collisional flows, play an important role in determining the 

rheology. In a shear flow of dense, inelastic, compliant particles, the duration of a 

typical collision may equal or exceed the time between collisions. Then, simultaneous 

interactions between more than two particles become likely, both in discrete-element 

simulations that employ compliant spheres and in physical experiments. In this event, 

small groups of particles overlap [3-5] and/or interact through repeated, weak, 

“chattering” collisions [1]. Overlaps reduce the frequency of collisions while 

chattering replaces strong binary collisions with numerous weak ones. In a range of 



volume fractions between 0.49 and 0.60 and coefficients of restitution greater than 

0.70, the influence of the correlations on the fluxes of momentum and energy is 

compensated for by non-local transport associated with the correlated motion.  

Consequently, overlaps and chattering first influence the collisional rate of 

dissipation. For denser and/or more inelastic flows, anisotropic and rate-independent 

contributions to the pressure and shear stress, associated with chains or clusters that 

eventually span the flow, are anticipated to develop [6-8].  

Models of dense granular shearing flows have attempted to incorporate these 

correlations in various ways. Ertas and Halsey [9] introduce a length associated with 

vorticial structures, Kumaran [10] employs higher spatial gradients in a kinetic theory 

for collisional interactions in dense shearing flows, Mitarai and Nakanishi [1] focus 

on a modification of the strength of the particle agitation that is associated with 

correlated velocities, and Jenkins [11,12] introduces a length associated with the size 

of particle clusters into the expression for the rate of collisional dissipation.  

Here, we attempt to improve the predictive capability of Jenkins’ [12] theory 

and extend it to very dissipative, frictional spheres. We first incorporate the observed 

frictional behavior in an effective coefficient of restitution. Then, because this results 

in description that involves substantial dissipation, we adopt the kinetic theory of 

Garzo and Dufty [13] for frictionless but very inelastic spheres. When applying the 

theory to dense flows, we treat overlapping and chattering particles in the same way; 

assume, as indicated by the numerical simulations [1,2], that the singularity in the 

radial distribution function occurs at volume fractions less than that for random dense 

packing; and choose the two parameters in Jenkins’ [12] theory to provide a 

reasonable agreement with the results of Pouliquen’s [14] physical experiments on 

inclined flows. We then use these material parameters and a simple, algebraic form of 

the energy balance to predict the relations between volume flux, flow depth, and angle 

of inclination in dense granular flows between friction sidewalls over the inclined 

surface of a heap and compare the predictions with the measurements of Jop, et al. 

[15]. 

  

Balance equations 

We consider identical spheres with a mass m and a diameter d. The mean 

number of particles per unit volume is n, the mean velocity u is defined as the average 

over particle velocity c using the single particle velocity distribution function, 



u c , the fluctuation velocity is then  C c u , and the strength of the velocity 

fluctuations, the granular temperature, is defined in terms of C by 2T C / 3 .  

The mass density mn  , the mean velocity, and the granular temperature are 

determined as solutions to the balance of mass and linear momentum that have their 

usual forms (e.g., [16]), and the balance of fluctuation energy, 

  (3 / 2) T tr    tD q .  (1) 

That is, the convected time rate of change of internal energy following the mean 

motion is equal to the rate at which fluctuations are created by the working of the 

stress t through the symmetric part D of the gradients of the mean velocity, less the 

sum of the divergence of the flux of fluctuation energy q and the rate of collisional 

dissipation  . 

 Numerical simulations of homogeneous, steady shearing flows of granular 

materials [17,18] indicate that the presence of friction does have an influence on the 

tractions necessary to maintain a shearing flow at a given solids fraction. Here, rather 

that introduce additional balance laws for angular momentum and rotational 

fluctuation energy, we attempt to take into account the frictional interactions only 

through their influence on the energy of the fluctuations of the translation velocity 

[19,20]. 

 

Constitutive Relations 

For solid volume fractions 3n d / 6    less than 0.49, we employ the constitutive 

relations for shearing flows that result from the kinetic theory of Garzo and Dufty [13] 

for identical frictionless, dissipative elastic spheres, but do not incorporate the small 

terms introduced by their function c* of the coefficient of restitution. The magnitude 

of c* is less than 0.4 and terms proportional to c* are typically multiplied by a small 

numerical coefficient.  

 If the x coordinate is taken in the flow direction, the y coordinate taken in the 

direction of shear, and the z coordinate orthogonal to these, the pressure 

 xx yy zzp t t t / 3    , the shear stress xyS t , the energy flux yQ q , and the rate 

of collisional dissipation   are given by 

 p 4 GFT  , (2) 



where 3G (1 / 2) /(1 )     is the product of   and the expression for the volume 

fraction dependence of  the radial distribution function at contact determined by 

Carnahan and Starling [21] in numerical simulations at moderate volume fractions 

and F (1 e) / 2 1/(4G)   ; 

 S u  , (3) 

where the prime denotes a derivative with respect to y and  

    1/ 2 1/ 22J / 5 pd / FT   , (4) 

with 
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 Q = T   , (6) 

where 

    1/ 2 1/ 2M / pd / FT   , (7) 

with  
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in which the subscript indicates a derivative with respect to  and 
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To incorporate the additional dissipation due to friction, we make use of a 

calculation by Herbst, et al. [22] of the rates of dissipation of the rotational and 

translational energy in a steady, homogeneous shearing flow. Because the numerical 

simulations indicate that the tractions quickly reach limiting values as the coefficient 

of sliding friction increases above 0.10, we apply their calculation to spheres in the 

limit of infinite friction. In this case, the ratio R of the energy of the rotational an 

translation velocity fluctuations is given by 

 0

0

2(1 )
R

14 5(1 )



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, (12) 

where 0 is the coefficient of tangential restitution in a sticking collision (e.g., [23]), 

and the rate of dissipation of translation fluctuation energy is 
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Consequently,  
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From this point onward, we use the symbol e to denote the effective coefficient of 

restitution. 

 When the volume fraction is greater than 0.49, but less than 0.60, the 

constitutive relations are taken to be those given above in the limit that the terms 

proportional to 1/G are small compared to unity, the volume fraction dependence in G 

is taken to be a modification of that determined by Torquato [24] in simulations of 

dense aggregates of spheres, and the particle diameter d in the rate of collisional 

dissipation is replaced by the length L of a typical chain of contacting particles. Then 

 p 2(1 e) GT   , (15) 

where  G 0.63 / 0.60   ; the expressions for S and   are unchanged, but 

 2J (1 e) / 2 ( / 4)(3e 1)(1 e) / 24 (1 e)(11 e)         ; the expressions for Q and   

are unchanged, but  2M (1 e) / 2 (9 / 8)(2e 1)(1 e) / 16 7(1 e)        ; and 
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We expect that the volume fraction at which G becomes singular depends upon the 

coefficient of restitution; the value of 0.60 seems to be appropriate for a coefficient of 

restitution of 0.70 (e.g., [1]). At volume fractions above 0.60, we anticipate that shear 

rigidity develops and that this contributes a rate-independent term to the shear stress 

and pressure.  

Chain Length 

We assume that the spheres are forced into overlaping or chattering contact along the 

principal compressive axis of the shearing flow and that the random motion of the 

spheres acts to destroy this order. The principal compressive axis is the eigenvector of 

the strain rate D that is associated with its most negative eigenvalue. Then, the 

magnitude and direction of the vector L of chain length is determined by the simple 

balance 

 1/3 1/2 2
ik k iĉG D L (LT / d )L 0  , (17) 

where ĉ  is a constant of order one. The power of G has been chosen to be 1/3 rather 

than 1/2 [12], because, as will be seen, this power, together with the value ĉ 0.50 , 

provides a relatively good fit to the physical experiments of Pouliquen [14].  

The relation (17) is a rough, microscopic balance between the effect that is 

conjectured to create chains or clusters - particles being forced together by the mean 

shearing into correlated interactions along the principal compressive axis that persist 

for a time equal to the inverse of the shear rate - and the effect that destroys them - 

collisions between particles in directions other than that of the principal axis of 

compression. The balance is phenomenological and crude by the standards of the 

kinetic theory that it is used with. However, when employed in conjunction with the 

algebraic form of the energy balance and the constitutive relations of the kinetic 

theory, the resulting theory has been shown [11,12] to reproduce the qualitative 

features of inclined flows seen in numerical simulations. Here, we show that with 

appropriate choices for the constant ĉ , power of G, and coefficient of restitution e, it 

reproduces the quantitative relations between volume flow rates, flow depths, and 

angles of inclination measured in physical experiments. 



 In a planar shearing flow, (17) yields  
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With S given by (3) and (4) and F (1 e) / 2   in the dense limit; 
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so L/d may be expressed in terms of the stress ratio and the volume fraction as 
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Upon employing the algebraic approximation to the energy balance 

 Su 0     (21) 

with  given by (16), we find that 
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Using (18) to eliminate L gives,   
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With this, L/d and S/p can be expressed as functions of   and e as 

 
1/3

2 2 2/9L 1 15
ˆ(1 e )c G

d 2 J
    

 (24) 
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Inverting (25) and using the relation between G and  , 
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This description can be phrased as a relationship between the stress ratio and 

the inertial parameter 1/2I du / (p / )  introduced by GRD MiDi [17]. Upon 

combining (15) and (19), we obtain 
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With (25), this yields the relation  
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Equations (26) and (28) specify the volume fraction and the stress ratio as functions of 

the inertial parameter, the coefficient of restitution, and the parameter c. These 

relations are equivalent to those proposed by GDR Midi [17] over the range of 

volume fractions and coefficients of restitution for which exchanges of momentum in 

collisions dominate the momentum transfer and before force chains span the system. 

That is, as  increases for a given e, the chain length L given by (24) will approach 

the system size. When it does, there is an additional mechanism for the transfer of 

momentum in the flow that we do not consider (e.g., [8]) - ephemeral chains of 

particles that transfer force across the flow and are responsible for the development of 

a yield stress. The model of GDR Midi continues to apply above this volume fraction 

and includes the rate-independent mechanism of momentum transfer, but the model 

developed here does not.  

 

Boundary-Value Problem 

 

We next use the balance laws and constitutive relations outlined above to phrase and 

solve a boundary-value problem for the steady, fully-developed flow over a rigid, 

bumpy base inclined at an angle  to the horizontal and compare the results with 

quantities measured in physical experiments by Pouliquen [14]. 

 

Differential equations 

 

The balances of momentum parallel and perpendicular to the flow are 

 S gsin    , (29) 



where  

 u S /   , (30) 

with   given by (4) and (5); and  

 p g cos    , (31)  

where, upon carrying out the differentiation and using (6), this first order equation for 

p can be employed as a first order equation for : 

   T (1 4G) / (1 4G)Q / g cos


           , (32)   

in which   is given by (9) and (10) and  is given by (7) and (8).  

The energy balance is 

 Q Su   , (33) 

where   is given by (16), with L d , if  2 2 2/3ˆ15(1 e )c G / (8J) 1   and 

1/2 1/3ˆL d(5 / 8J)(1 e)cG S / p   , otherwise; and 

  T Q /      , (34) 

where  is given in (32). 

The specification of the volume V of the material over a unit area of the base 

is implemented as a boundary condition to a first order differential equation for the 

partial hold-up, 
y

0
v(y) ( )d    :  

 v   , (35)  

with v(0) 0  and v(H) V .   

Boundary conditions  

We assume that the base consists of a flat wall to which spheres identical to those in 

the flow have been fixed and use the boundary conditions on the slip velocity and 

energy flux at a bumpy, nearly elastic, frictionless base derived by Richman [25] with 

the effective coefficient of restitution. More complicated expressions that capture 

more precisely the influence of the friction [26] on the slip and energy flux are 

available.  

The balance of momentum tangent to the base provides 
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where   1/2B 1 5 / (8G) / (2 12)   , and  , the bumpiness, measures the average 

maximum penetration of a flow sphere between boundary spheres. When the diameter 

of the flow spheres is the same as that of the boundary spheres, the bumpiness is 

given in terms of d and the average separation s between the edges of the boundary 

spheres bysin (d s) / (2d).    

The balance of energy at the base is 

 Su Q D  , (38) 

where  1/2 1/2D 2 / pT h(1 e)   , with 2h 2(1 cos ) / sin    . 

 We take the top of the flow to be the point where the free flight trajectory of a 

particle ejected normal to the flow with velocity 1/ 2T  first equals the mean free 

distance between collisions. At this point [27], 

 p 4 GFT 0.037 gd /     . (39) 

The flow momentum and energy flux there, associated with the acceleration of the 

particle under gravity [28], are 

 S p tan   (40)  

and 

 1/2 2Q pT tan   . (41) 

 We take e 0.60 , / 3   , and c 0.50  and employ the two-point Matlab 

boundary-value problem solver bvp4c to determine solutions for ranges of 

dimensionless hold-up at three values of inclination in Pouliquen’s [14] experiments. 

As far as we know, the continuum equations that result from the kinetic theory of 

Garzo & Dufty have not previously been used to solve a boundary-value problem. 

The introduction of the additional dissipation as an effective coefficient of 

translational restitution in the limit of high friction coefficient is also new; effective 



coefficients of restitution have previously been calculated in the limit of small friction 

coefficient [19,20 ]. Torquato’s radial distribution functions with the singularities at 

random close packing have previously been employed for dense shearing flows of 

nearly elastic, frictionless disks [11] and spheres [12].  

In Fig. 1, we show the predicted dimensionless depth-averaged velocity versus 

the dimensionless depth of flow versus the measurements of Pouliquen [14]. The 

agreement is rather good. In Fig. 2, we show profiles of volume fraction for various 

depths at the three angles of inclination. The profiles of volume fraction at the lowest 

angle of inclination exhibit the features seen in numerical simulations [29,30]: there 

are solutions over a range of volume hold-ups and the individual profiles of volume 

fraction exhibit a core in which the volume fraction is constant. At the higher angles 

of inclination, the base influences the flow throughout its depth; but, at a given angle 

of inclination, flows are still possible over a range of depths. The value of the 

effective coefficient of restitution that we employ for the glass spheres used by 

Pouliquen [14] corresponds to values of e 0.92  and 0 0.25   for the true 

restitution coefficients that are close to those measured by Foerster, et al. [23].  

 

Algebraic Theory 

 

The numerical simulations of Mitarai & Nakanishi [30] show that the profile of the 

granular temperature T in a dense inclined flow may be determined using the 

algebraic balance between production and dissipation of fluctuation energy and 

Jenkins [11,12] confirmed this in the context of his extension of the kinetic theory.  

Here, we employ the constitutive theory outlined above and the algebraic balance of 

the energy to study flows over the surface of a heap that is confined between parallel, 

vertical walls and compare the predictions with the results of physical experiments by 

Jop, et al. [15]. 

 

Inclined, erodible flow with sidewalls  

 

We take sliding friction of the side walls, with friction coefficient w , into account in 

an approximate way by including the average frictional resistance of the sidewalls 

through the thickness W of the flow in a one-dimensional analysis through the depth 



of the flow. At the base of the flow, we assume that the material yields; this fixes the 

ratio of shear stress to pressure there. We assume that the flow is so dense that the 

extension of the kinetic theory that involves the additional length scales applies 

throughout its depth. We will see that this limits the angles of inclination for which 

the analysis applies. For greater angles of inclination, there is a more dilute region 

above the dense region that is described by the classical kinetic theory. Here we 

assume that the upper surface is free and show only these results. They include 

essentially all of the situations considered by Jop, et al. [15]. 

In a steady, fully-developed, inclined flow in a dense layer of thickness H, 

because the mass density is nearly constant, the pressure p is given to a good 

approximation by 

 

 p g(H y)cos   ,    (42) 

where s0.60  , with s  the mass density material of the spheres, g is the 

gravitational acceleration, y is measured normal to the base and upwards from it, and 

  is the angle of inclination. With p 2 (1 e)GT    from (15), 
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 In the flow, 
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At the base of the flow the material is assumed to be at yield. Then, if the shear stress 

and pressure there are denoted by the subscript zero: 0 0S p  , where   is known, 

and 0p gH cos   . With this, (48) becomes 
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When the upper surface is free, the height of the flow follows from (49): 

 w

H
0 tan

W
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 The velocity u satisfies 
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With (46), this may be written as 
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where the dependence of 1/ 2T  on p is explicit in (43) and also enters through the 

dependence in (44) of G on S/p and the dependence in (49) of S/p on p. As an 

approximation, the dependence of G is ignored and, in (52), the value G  of G 

evaluated at the average value S/ p of S/p is employed, where 

 wS H
tan

p 2 W


   .     (53) 

Then, (52) may be integrated with the boundary condition 0u(p ) 0  to give 

1/23/21/2

0
1/2 2

0

1/2 3/2 1/2 5/2

w
0 0 0 0

pu (1 e) p
15 1

(gd cos ) 72 J G gd cos p

p p p p H
5 2 3 tan 3 4 5

p p p p W

                          

                            
               

 

      (54) 

The depth-averaged velocity U based on this is given by 

 
1/2 3/2

w1/2 2

U (1 e) H 20 H
5 2 tan

(gd cos ) 72 J G d 7 W

                    
. (55) 



If we assume that the volume fraction throughout the flow is 0.60, the volume flow 

rate per unit width, q, is 

 
1/2 1/2

q H U
0.60

d(gd cos ) d (gd cos )


 
.  (56) 

 Finally, if the top of the layer is defined as the point at which L=1, then upon 

eliminating G between (20) and (25) and setting L=1, 

 
2

S 24 (1 e)

p 5 (1 e)

  
    

.    (57) 

This limits the inclination of the flow that can be considered; for e 0.60 , 

S / p tan   cannot be greater than 0.58  

In Fig. 3, we compare the predictions of (56) and (57) with the values 

measured by Jop, et al. [14] using a coefficient of sidewall friction of 0.25 and a yield 

stress ratio of 0.40. The agreement is good, despite the number of approximations that 

have been made in the analysis. However, the height of the flow at the various angles 

of inclination is under-predicted by as much as forty per cent.  

 

Conclusions 

 

Kinetic theory for very dissipative, frictional spheres, extended to include an 

additional length scale associated with the cluster size, can predict the experimental 

results of Pouliquen [14] on dense, inclined flows over a rigid bed without side walls. 

The associated algebraic theory used with the same parameters can reproduce at least 

some of the experimental results of Jop, et al. [15] on dense, inclined flows over an 

erodible bed between frictional sidewalls.  
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Figure Captions 

 

Fig. 1: Predicted (lines) and measured (symbols) dimensionless depth-averaged velocity versus 

dimensionless height for angles of inclination of o28 (full line, circles) o25 (dashed line, squares), and 

o22 (dashed-dot line, triangles) for ˆe 0.60,  c 0.50, and / 3.       

 

Fig. 2: Volume fraction versus dimensionless depth for flows of various heights at angles of inclination 

of o28 (full lines) o25 (dashed lines), and o22 (dashed-dot lines) for ˆe 0.60,  c 0.50, and / 3.       

 

Fig. 3: Predicted (lines) and measured (symbols) values of the dimensionless volume flow rate versus 

the tangent of the angle of inclination for three flow widths.
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